
Analysis of Defenses Against Code Reuse Attacks on
Modern and New Architectures

by
Isaac Noah Evans

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015
c�Massachusetts Institute of Technology 2015. All rights reserved.
The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

September 2015
Certified by. .

Dr. Hamed Okhravi
Technical Staff, MIT Lincoln Laboratory

Thesis Supervisor
Certified by. .

Dr. Howard Shrobe
Principal Research Scientist and Director of Security, CSAIL

Thesis Supervisor
Accepted by .

Dr. Christopher J. Terman
Chairman, Masters of Engineering Thesis Committee

Distribution A: Puclic Release.The Lincoln Laboratory portion of this work was sponsored by the Assistant Secretary of Defense for Research and Engineering under Air
Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States

Government.

2

Analysis of Defenses Against Code Reuse Attacks on Modern

and New Architectures

by

Isaac Noah Evans

Submitted to the Department of Electrical Engineering and Computer Science
on September 2015, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Today, the most common avenue for exploitation of computer systems is a control-flow
attack in which the attacker gains direct or indirect control of the instruction pointer.
In order to gain remote code execution, attackers then exploit legitimate fragments of
code in the executable via techniques such as return-oriented-programming or virtual
table overwrites.

This project aims to answer fundamental questions about the efficacy of control-
flow-integrity (CFI), a defensive technique which attempts to prevent such attacks
by ensuring that every control flow transfer corresponds to the original intent of the
program author. Although this problem is in general undecidable, most programs
running on modern operating systems adhere to standard conventions which allow
inferences from static analysis to set a specification for allowable runtime behavior.

1. By examining extremely large, complex real-world programs such as web
browsers, this project will characterize the fundamental limits of CFI techniques.
We find that it is possible for a program in which CFI is perfectly enforced to be
exploited via a novel control flow attacks.

2. We examine the potential for hardware support for CFI and other techniques
via generalized tagged architectures, and explore the tradeoff between the compati-
bility, performance, and security guarantees of hardware-assisted policies on tagged
architectures.

Thesis Supervisor: Dr. Hamed Okhravi
Title: Technical Staff, MIT Lincoln Laboratory

Thesis Supervisor: Dr. Howard Shrobe
Title: Principal Research Scientist and Director of Security, CSAIL

3

4

Acknowledgments

This work was sponsored by the Assistant Secretary of Defense for Research & En-

gineering under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations,

conclusions and recommendations are those of the author and are not necessarily

endorsed by the United States Government.

I would like to thank my advisors, Dr. Howard Shrobe and Dr. Hamed Okhravi,

for their encouragement, insights, and thoughtful commentary and criticism. Stelios

Sidiroglou-Douskos, at CSAIL, also became an unofficial advisor and a great mentor

on all things academic. I was very fortunate to be able to work with such talented

mentors.

I also thoroughly enjoyed working with my teammates Ulziibayar Otgonbaatar

and Tiffany Tang on the software side and Julián Gonzalez and Sam Fingeret on the

hardware side. This work would not have been nearly as interesting or fun without

them.

And how could I not thank my wonderful parents: my father who challenged me,

encouraged me, and inspired my dreams and ambitions, and my mother, who poured

so much of her life into my education and always reminds me that “I can do all things

through Christ who strengthens me.”

Finally, I would not have even started this process without the encouragement of

the lovely Katherine and her constant support and encouragement.

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Outline . 16

2 Background 19

2.1 Code Diversification . 19

2.2 Memory Safety . 20

2.3 Protect the Stack . 21

2.4 Control Flow Integrity . 21

2.5 Hardware Extensions . 22

3 Effectiveness of Code Pointer Integrity 25

3.1 Inadequacy of Current Defenses . 25

3.2 State-of-the-Art Defenses: Code Pointer Integrity 25

3.2.1 Background . 25

3.2.2 CPI in Detail . 26

3.3 Attacks on CPI . 27

3.3.1 Side-Channel Memory Attacks 27

3.3.2 CPI: Timing Attack Example 28

3.3.3 CPI: Non-Crashing Attack . 33

3.3.4 CPI: Crashing Attack . 36

3.4 CPI Exploitation . 37

3.5 Countermeasures . 38

7

4 Effectiveness of Ideal Control Flow Integrity 41

4.1 General Limits of Control Flow Integrity 41

4.1.1 Background . 41

4.1.2 Sound and Complete Pointer Analysis 42

4.2 Attacking Ideal CFI . 43

4.2.1 ACICS Discovery Tool . 44

4.2.2 Reverse Dataflow . 46

4.2.3 Discussion . 47

4.2.4 ICS Instrumentation Tool . 48

4.3 In-CFG Attack Examples . 48

4.3.1 Threat Model . 48

4.3.2 ACICS in Apache . 49

4.3.3 Target Functions in Apache 50

4.4 Defenses . 51

4.4.1 Static Analysis within Type System 51

4.4.2 Connection to Programming Language Constructs 52

5 Tagged Hardware Architecture 55

5.1 Background . 55

5.2 RISC-V Extensions . 56

5.3 RISC-V Tag Policies . 58

5.3.1 Basic Return Pointer Policy 58

5.3.2 Linear Return Pointer Policy 59

5.3.3 Function Pointer Policy . 60

5.4 RISC-V Policy Test Framework . 60

6 Compiler Support 63

6.1 LLVM Design Decisions . 63

6.2 Compiler Support Component: Find All Function Addresses 64

6.3 Alternative Compiler Designs . 65

6.4 Function Pointer Policy . 67

8

6.5 Function Pointer Policy Evaluation 67

7 Future Work and Conclusion 69

7.1 ACICS Improvements . 69

7.2 Hardware and Policy Improvements 70

7.3 Conclusion . 71

9

10

List of Figures

3-1 Example of Data Pointer Timing Side Channel 28

3-2 Nginx Loop Pointer Overwritten in nginx_http_parse 29

3-3 Safe Region Memory Layout . 34

3-4 Non-Crashing and Crashing Scan Strategies 35

4-1 ACICS Discovery Tool . 44

4-2 Backward dataflow analysis to identify the target address 47

4-3 bucket_brigade declarations in APR-util 52

4-4 bucket_brigade_destroy macro definition in APR-util 53

4-5 Example call from BIND xfrout.c . 53

5-1 settag macro in tag_extensions.h 57

5-2 RISCV Policy Evaluation Test Matrix Excerpt 61

11

12

List of Tables

3.1 Samples required to discriminate zero from non-zero memory as a func-

tion of timing side-channel loop runtime in a wired LAN 32

4.1 Indirect Call Sites Dynamic Analysis 49

4.2 Automatic Corruption Analysis . 49

4.3 Target Functions Count Based on CallGraph distance 51

4.4 Matching ICS & Function Signatures 51

13

14

Chapter 1

Introduction

1.1 Motivation

Modern computer systems were not architected with an emphasis on security.

At the dawn of the computing era, most of the focus of computer research was

on speed and capabilities. As computers have grew more affordable, engineers added

usability—computing for the masses. Now in an age that is thoroughly dominated by

fast, capable, and easily usable computers, there is an increasing demand for security.

A principal reason for this demand is the rise of the Internet. As a global network that

connects billions of devices and users at speeds which render our notions of physical

distance nonsensical, the Internet throws the problem of malicious actors into sharp

relief.

There are many avenues for mischief on the Internet, but few so exciting and

powerful as “remote code execution” (RCE). An attacker sends a specially crafted

message to a target machine, and suddenly that machine begins running the attacker’s

program. One might hope that scenarios such as this are rare; but in fact there are

often dozens to hundreds of flaws in software such as web browsers and operating

systems [8, 3, 2] that lead to remote code execution.

Are the programmers writing these systems inept? Sometimes. The more serious

problem, however, is that the programming languages and hardware they are writing

for were designed for the customers needing maximal speed and features for their

15

programs. Unfortunately, this emphasis on close-to-the-metal performance means

that languages like C and C++ have emerged as the choice for most large software

projects. In these languages, the penalty for incredibly small mistakes—overflowing

an integer, failing to properly check the length of an array, or being overly accepting

of user input during sanitization—can often be remote code execution.

The fact that there exist entire catalogs of vulnerability types which exist in some

programming languages but not others is indicative of the idea that this is not the

programmer’s problem. The penalty for failure should not be so high. Worse, the

rates for discovery and exploitation of these vulnerabilities are increasing [32].

Indeed, higher-level languages, in particular those with memory safety, eliminate

several entire categories of vulnerabilities. In fact some older programming languages

such as LISP had many desirable security properties: memory safety, tagged pointer

types, and integer overflow detection. There is a currently a great deal of interest

in bringing these strong guarantees against entire classes of vulnerabilties to lower-

level languages such as C and C++, which account for the vast majority of operating

systems and performant applications.

1.2 Outline

This thesis evaluates techniques built around the idea of control-flow integrity (CFI).

CFI attempts to define a policy for the correct and safe flow of the instruction pointer,

derived from the previously determined program control-flow graph (CFG). The CFG

may be defined by static source-code analysis, static binary inspection, or dynamic

instrumentation.

Although CFI has been examined extensively in prior work, there has been an

unstated assumption regarding the underlying effectiveness of the technique. Papers

typically assume a threat model in which an attacker can read or write arbitrary

memory and then develop a policy designed to detect such alterations and defend

against them. A perfect policy is extremely costly to implement, so typically an

approximation is used. For instance, simply verifying that all calls go to the begining

16

of function bodies.

We will demonstrate that even an ideal CFI technique—without any compro-

mises for performance—cannot fully protect from control-flow attacks, assuming, as

is typical in the literature, a powerful attacker who can read or write any location

in memory. The ideal CFI technique employs a “perfect” control flow graph, which

is defined as a the combination of an infinite shadow stack, an infinite number of

available tags (where a function may only call other functions that have the correct

target tag), and a state-of-the-art static analysis.

In Chapter 2, we give an broad overview of the state-of-the-art in defense against

code reuse attacks, including CFI and other creative techniques.

In Chapter 3, we analyze a novel system called “Code Pointer Integrity” which

aims to preserve the benefits of full memory safety at a fraction of the performance

costs by protecting only the code pointers of a program.

In Chapter 4, we show that there exist pairs of call sites and target functions

through which an attacker can gain remote code execution without deviating from

the strict constraints imposed by a shadow stack and an unlimited number of function

tags drawn from a best-possible static analysis.

In conjunction with the exploration of the control-flow integrity work, Chapter 5

details the development of compiler extensions to support a policies on tagged ex-

tension to the new RISC-V [9] architecture. These compiler extensions are designed

to enforce CFI mechanisms and more generally prevent control-flow attacks through

hardware-provided extensions making use of compiler-provided tags. Chapter 6 de-

tails the design and evaluation of a restrictive function-pointer policy policy running

on the extended hardware.

Finally, Chapter 7 details avenues of future work, including improvements to the

tools and algorithms we have presented for CFI analysis and hardware policy evalu-

ation.

17

18

Chapter 2

Background

There is an extensive body of work examining methods to prevent control-flow attacks.

To aid in evaluating the numerous creative techniques, we categorize them into several

families of approaches.

2.1 Code Diversification

A code reuse attack is typically employed when the virtual memory manager is en-

forcing “write xor execute” permissions on memory pages. Since new code cannot be

injected by directly writing to an executable page, an attacker uses small snippets of

instructions in the original program to achieve remote code execution. The snippets

of code that used in a code reuse attack are called “gadgets.” [13]. When chained

together appropriately, these gadgets create what is termed a “weird machine” where

the instructions are gadgets—chains of instructions which were never intended to be

used in this fashion.

Code diversification aims to remove the gadgets from the program completely, or

effectively remove them by making it probabilistically impossible for the attacker to

guess where they are. If implemented correctly, this approach results in no known

fragments of aligned or unaligned executable code that can be used by the attacker to

exploit the system. In-Place Code Randomization [36] accomplishes this by changing

the order of instructions and replacing with equivalents while examining the assembly

19

listing to ensure that useful gadgets are never created. Binary Stirring [47] reorders

the basic blocks of an program each time it is executed, randomizing their locations.

Another approach is NOP insertion, used in projects such as the MultiCompiler [22].

An extensive summary of code diversification is provided in [28].

The advantage of code diversification is extremely low overhead (1% for Binary

Stirring, for instance) and high compatibility—it can often be implemented via binary

instrumentation, which does not require program source. However, these techniques

have been shown to fail to defend against powerful new attack techniques [43, 10].

They do not protect against an attacker with the ability to read or write to an

arbitrary memory location. They also cannot protect programs that perform Just-In-

Time (JIT) compilation. Other weaknesses exist: side channels can leak the location

of the randomized gadgets [41], and injected addresses will be translated and can be

leaked.

2.2 Memory Safety

Full memory safety is an optimal solution for the most pessimistic attack model,

since it eliminates the potential for unsafe memory reads and writes, thus perfectly

protecting all arrays and variables. Full memory safety prevents a wide variety of non-

temporal control flow attacks including ROP, stack smashing, virtual table corruption,

and others. It can also be extended to protect against temporal attacks such as use-

after-free. The overhead of this approach is an upper bound for any ROP-mitigation

technique. SoftBound [34] is the de facto standard for memory safety; it achieves 67-

250% overhead. Unfortunately, in practice the overhead for these techniques on large,

real-world applications such as Mozilla Firefox is typically over 100%, as seen in the

AddressSanitizer [42] project. This prohibitively high overhead prevents widespread

adoption.

20

2.3 Protect the Stack

In principle, ensuring the integrity of stack values should be useful in protecting

against control-flow attacks such as ROP if the program is coded using a higher-

level language like C that conforms to the architecture’s calling convention. However,

protecting the stack poses problems for compatibility because it is not always true in

compiled real-world executables that a callee function always returns to the address

pushed by its caller. The ROPDefender paper [16] shows three cases where assumption

fails: a called function may not return, a function might be invoked without an

explicit call, and the C++ standard library exception handlers violate this concept.

Although it is possible to overcome these compatibility concerns, a more serious issue

is that stack protection is of limited utility since it does not protect against other

control flow attacks (e.g. virtual table corruption, function pointers on the heap, etc.).

Additionally, the overhead of building a shadow stack can be prohibitive. Examples of

this approach include RopDefender [16], which uses Pin, a JIT-based dynamic binary

instrumentation framework to detect ROP via shadow stacks. Defending Embedded

Systems Against Control Flow Attacks [21] allocates separate, protected stack for

return addresses on the AVR architecture.

2.4 Control Flow Integrity

The original CFI paper [6] represented the CFG as a directed graph, but only enforced

that calls correspond to valid call locations and returns correspond to valid return

locations. This was quickly shown to be ineffective. CCFIR [49] expands on this

approach, using a springboard enforcement mechanism that achieves 3-8% overhead

by adding a separate third class of functions: returns to libc or other libraries. This

also is not enough to prevent ROP gadgets from being built.

Other approaches to CFI rely on cryptographic mechanisms: Cryptographically

Enforced Control Flow Integrity (CCFI) [31] performs a single round of AES as an

secure message authentication code on pointer values to prevent their being forged by

21

an attacker, storing the key in a rarely-used x86 XMM register. GFree [35] performs

“encryption” on return addresses in function prologue and then “decryption” before

they end. K-Bouncer [37] performs runtime checks for abnormal control flow transfers

when about to execute “important” functions (e.g. syscalls). However, K-Bouncer and

a number of similar techniques have been recently shown to be fundamentally flawed,

as we discuss in Section 3.1. There is also a recent, highly performant and compatible

solution for forward-edge only (jumps and calls but not returns) control-flow integrity

via indirection, by the Google Chromium toolchain team [45].

This work contributes to the attacks on CFI techniques by defining an upper

bound on how effective any CFI technique can be on real-world programs.

2.5 Hardware Extensions

An optimal defense to the control-flow attack must assume the most pessimistic threat

model: an attacker who can read and write arbitrary memory (typically dataflow

attacks are considered out of scope). Hardware support is an ideal way to achieve

this level of protection, although potentially at the expense of compatibility.

There are two basic approaches to preventing control-flow attacks in hardware:

pointer-based schemes and data tagging schemes. On the pointer-based side, Hard-

Bound + CETS [17] is an extension of the software approach in SoftBounds to hard-

ware. WatchdogLite [33] is an ISA extension that is designed to efficiently execute

hinted pointer safety checks, achieving overheads around 30%. The Low-Fat pointer

scheme [27] uses a space-efficient representation inspired by floating-point representa-

tions to achieve only 3% memory overhead for pointers. The 64-bit fat pointers have

46 of the bits available for addressing; the encoding includes information for distinct

types such as integers, instructions, and pointers.

There are also many projects implementing data-tagging schemes. The PUMP

project [18] is a fully generic scheme that allows generalized checks based on meta-

data or tags associated with all addresses, but at the cost of high (20-40%) overhead;

it is essentially a completely generic scheme that expresses restrictions symbolically

22

and could be used to emulate in hardware many of the previously-discussed CFI

schemes. The CHERI system [48] is another hardware scheme with fine-grained mem-

ory protection provided by a cooperative compiler. It supports a number of additional

features including sandboxing and has been able to run modified versions of FreeBSD

(CheriBSD) with pointer integrity and bounds checking. The call-and-return secu-

rity mechanisms evaluated thus far in CHERI are however somewhat primitive, only

supporting matching calls to call sites and returns to return sites.

This work implements a tagged architecture hardware approach as an extension

to the RISC-V [9] ISA, due to its simplicity of implementation, versatility (with many

applications beyond security), and compatibility. The lowRISC project [12] aims to

add tag support to the new, open RISC-V ISA. Many of their goals are similar to ours,

and we enjoyed several discussions with the lowRISC team at Cambridge University

and a group of engineers at BAE Systems who are similarly interested in exploring

tagged additions to RISC-V.

23

24

Chapter 3

Effectiveness of Code Pointer

Integrity

3.1 Inadequacy of Current Defenses

As seen in Section 2.4, there has been an arms race between the developers of defen-

sive CFI schemes and increasingly-powerful exploitation techniques which break the

defenses. Recently, a series of papers have shown that the most recent generation of

CFI-based defenses are seriously flawed. The Out of Control paper [23] showed that

full code execution could be achieved even when an attacker was restricted to only

legitimate call and return sites inside common applications.

3.2 State-of-the-Art Defenses: Code Pointer Integrity

3.2.1 Background

A recently published technique, Code Pointer Integrity [26], employs a restricted,

optimized version of full-memory safety that aims to protect only code pointers,

trading off some of the guarantees of full-memory safety in exchange for dramatically

better performance. CPI claims a 10-20% performance penalty on average across the

SPEC benchmarks. The insight behind CPI is that if data pointers and code pointers

25

can be correctly separately identified, memory safety protections can be applied only

to code pointers. Of course, CPI is not providing all the benefits of memory safety;

dataflow attacks, information disclosures, and other non control-flow attacks are still

possible. The low-overhead performance results are the significant novel component

of the CPI system.

3.2.2 CPI in Detail

CPI Static Analysis

CPI separates the code pointers from data pointers via an LLVM analysis pass on the

original source code. CPI divines what is a code pointer (in CPI parlance a “sensitive

pointer”) as opposed to a data pointer purely by examining the corresponding C data

type. Any pointer to a function is obviously a member of the sensitive set, as are

any composite types such as arrays which contain a sensitive type or any pointer to

a sensitive type. Due to the prevalence of storing code pointers in types such as char

* or void * by C programmers, CPI also considers those universal pointers to be

sensitive types.

The number of code pointers identified is much lower than the number of data

pointers; in practice about 10% in the experience of the CPI authors. This provides

the key benefit of CPI, since the resulting performance overhead is much lower than

full memory safety. A weaker variant of CPI, “Code Pointer Safety” (CPS) protects

only the sensitive types (as opposed to also protecting pointers to sensitive types);

a trade-off in security guarantees in exchange for even better (average 2% overhead)

performance.

CPI Instrumentation

After identifying sensitive pointers, CPI inserts runtime checks which store and re-

trieve sensitive code pointers from a “safe region.” For CPS, only the pointer values

are stored; for CPI a lower and upper bound are stored along with the value. At

any sensitive (i.e. indirect) control-flow transfer point, if a sensitive type is used,

26

CPI runtime instructions load the sensitive pointer from the safe region. Control-flow

hijacking is thus prevented as there is an assumption that an attacker cannot modify

the safe region and influence the load used in the indirect call.

The CPI instrumentation also guarantees, in theory, that no other instructions

can access the safe region. CPI uses hardware memory segmentation support to

accomplish this isolation on supporting architectures such as x86-32. On other archi-

tectures, CPI uses information hiding via randomization to protect the safe region.

In addition to randomly locating the safe region, CPI also guarantees that there is

no direct pointer into the safe region. This is done by hiding the base address of

the safe region in a register (%gs or %fs), instrumenting the code to ensure there are

no other accesses to that register, and then replacing the in-program pointers with

indices relative to the hidden base address.

3.3 Attacks on CPI

We present an attack on CPI showing that on modern (x86-64 and ARM) architec-

tures, the security guarantee of the randomized safe region is much lower than claimed

in the original CPI paper [19]. Mitigations to the CPI approach are possible using a

different, non-randomization based safe region, but the performance impact of these

mitigations is unknown.

We make use of both fault and timing side-channel analysis techniques, explained

below, separately in our attack on CPI. Fault analysis is used for a crashing attack

and a novel application of timing analysis for a quieter but more time-intensive non-

crashing attack.

3.3.1 Side-Channel Memory Attacks

Side-channel memory attacks are a new, indirect form of information disclosure. The

closest previous use to our work is [41]. There are two principle types of side-channel

disclosure: fault analysis and timing analysis. Both of these techniques can disclose

the contents of arbitrary memory locations.

27

Fault analysis works by observing distinct program effects caused by an abnormal

input—for instance, a program crash. A domain-relevant example of fault analysis is

the Blind ROP attack [10], which strategically uses crashes to leak information about

program memory.

Timing analysis, on the other hand, creates a distinct input and then measures

the time taken for the processing of that input. As an example of a timing analysis

attack, consider the pseudocode snippet in Figure 3-1. Here a pointer is dereferenced

at an offset and used as the upper bound for a loop which performs an increment

operation. The runtime of this loop is directly proportional to the value at the

dereferenced memory location.

i = 0;

while (i < pointer->value)

i++;

Figure 3-1: Example of Data Pointer Timing Side Channel

Although it is slower than fault analysis, there are a number of advantages to

using timing analysis for memory disclosure. It can read locations that are zero

without a crash, unlike most traditional memory disclosures. Additionally, memory

locations with contents equal to zero, which are statistically more common in many

environments, can be read faster than other locations. We make use of this fact in

our non-crashing CPI attack.

3.3.2 CPI: Timing Attack Example

To validate our idea that CPI could be attacked with timing channels, we built a

proof of concept timing attack against a CPI-protected version of Nginx. We assume

only the existence of a data pointer overwrite vulnerability that affects control flow.

Vulnerability

This data pointer overwrite can be accomplished by a heap or stack overflow, depend-

ing on where the original data pointer was located. For our purposes in the Nginx

28

analysis, we used a stack overflow similar to CVE-2013-2028 [4] to overwrite a data

pointer.

for (i = 0; i < headers->nelts; i++)

Figure 3-2: Nginx Loop Pointer Overwritten in nginx_http_parse

We overflowed a data pointer in a core Nginx component that performs string

processing. The value at the data pointer we control now becomes the upper bound

of the string processing loop, meaning that the overall time to process a request has

a dependency on an arbitrary memory location. Specifically, the loop we used is in

the source code of nginx_http_parse.c, shown in Figure 3-2.

Importantly, our vulnerability exploits the fact that the value dereferenced by the

pointer is a char type corresponding to a single byte, rather than an integer or other

data type; this means that there are only 256 possible values that the remote timing

attack needs to discriminate between. In practice, we are able to require even lower

resolution due to our knowledge of the layout of the CPI safe region.

Timing Side Channel

Next for our proof of concept, we measured the round-trip time (RTT) of a simple

HTTP request that exploited this vulnerability. Several dozen samples are collected

for each memory location. We then build a model that creates linear function mapping

round trip times to byte values between 0 and 255. Using this, we can read the

contents of arbitrary bytes in memory with some degree of certainty, depending on

the amount of jitter in the RTT of the network, the time we are willing to spend

reading samples on each byte, and the overall bandwidth of the network and Nginx.

We later found that our knowledge of the safe region’s layout and structure was

consistent enough that it is sufficient to simply divine zero from non-zero bytes; the

algorithm presented uses this simplification.

The algorithm used to create this model mapping remote addresses to “zero” or

“non-zero” from the timing channel is as follows:

29

• Parameters:

– nsamples The number of samples to take for each remote address. Each

sample is a measurement of the round-trip time (RTT) for a request that

references a specific remote address.

– max_calibration_rounds The maximum number of calibration rounds

that will be performed before preceeding to the scan.

– positive_calibrations The number of addresses corresponding to non-

zero memory to scan during calibration.

– negative_calibrations The number of addresses corresponding to zero

memory to scan during calibration.

• Calibration:

While the current calibration round number is less than max_calibration_rounds:

1. Repeat a network request nsamples times and record the RTT for each

address in a parameterized range of known addresses with non-zero con-

tents.

2. Repeat a network request nsamples times and record the RTT for each

address in a parameterized range of known addresses with zero contents.

3. Flatten the results of the previous steps into two contiguous range of sam-

ples, one corresponding to non-zero memory (positives) and the other to

zero memory (negatives).

4. For every percentile between 0 and 100, filter all out all data in positives

and negatives below that percentile range. Then compute hi, the mean of

the positive filtered scan results; also compute lo, the mean of the negative

filtered scan results. Use the mean of these two values as the threshold

to classify all of the measurements into positive (non-zero) and negative

(zero) pages. If the number of true positives added to the number of true

negatives is higher than that of any previous percentile, set the global best

result to the hi, lo values used in this iteration.

30

5. If the number of false positives is 0 and the number of false negatives

is also 0, terminate the calibration. Calibration will also terminate after

max_calibration_rounds, as mentioned. The speed of calibration is de-

pendent on network conditions, most importantly the jitter observed on

the network.

• Scanning:

We now continue at a much higher speed to scan the target addresses for the

attack. For each address, we take nsamples measurements, filter by the best

percentile found during calibration, and use the threshold compute by averaging

the best hi and lo from calibration. If our analysis shows a positive result, we

will re-perform a calibration sequence and scan again before reporting success

and terminating the scan. This avoids spurious success reports caused by drift

in the network conditions.

Timing Side Channel In Practice

The overall speed achievable by this algorithm is dependent on the time difference

between the maximum and minimum time added to the remote request by the memory

value at the attacker-controlled dereference. If the dereference is byte-specific, as in

our case, this is the difference between in time between 0 and 255 loop iterations.

This time delta forms what is effectively the signal-to-noise ratio of the timing side

channel.

We performed an extensive analysis of the effect on this ratio on the viability of

remotely using the side channel, because we initially had difficulty reproducing similar

previous results such as [41]. To diagnose our issue, we reconstructed the exploit used

in [41]. The loop used in the Apache web server takes about 16ms to run 255 times

as seen in graphs presented in their paper. We directly instrumented Apache to find

the time taken in one iteration of the loop, and found it to be 0.4ms. This is within

experimental error the 16ms figure when multiplied by 255.

Next, we tested the loop time for the Nginx exploit we developed. We found that

31

our Nginx loop was only 1 to 3µs per iteration. This is notable because the loop

employed in our attack had two orders of magnitude less signal than those previously

tested in the literature.

Table 3.1: Samples required to discriminate zero from non-zero memory as a function
of timing side-channel loop runtime in a wired LAN
Time for 255 Iterations Samples Per Byte False Positives False Negatives
16µs 255 samples 0 / 200 0 / 10
14µs 337 samples 0 / 200 0 / 10
12µs 150 samples 20 / 200 0 / 10
10µs 505 samples no data no data
8µs 150 samples no data no data
6µs 1702 samples 5 / 200 0 / 10
4µs 757 samples 41 / 200 0 / 10
2µs no convergence n/a n/a

We experimented on a quiet wired LAN to discover just how low the loop iteration

could go before we were unable to reliably divine between zero and non-zero pages.

Table 3.1 shows various values tested for the overall runtime of 255 iterations of

the loop. The validation used a set of 200 zero pages for the negative tests and 10

pages in the C standard library (libc) for the positive test. Calibration ran before

the validation set until 30 zero pages (negative_calibrations) and 10 libc pages

(positive_calibrations) could be classified correctly. The 8µs case was clearly

anomalous; we attribute this to a fortunate lack of drift in the network after the 10µs

test. For the 2µs case, there was no convergence after 5743 samples and the test was

terminated.

The closest other result discussing the performance of timing side channels as a

function of the loop iteration value was a whitepaper by Matasano Security Research

[15], which we also credit for some of the ideas used in our proceedural setup to ensure

higher accuracy.

Before these experiments started, our setup procedure checked the following en-

vironmental conditions:

• The libc checksum is 7b6bbcea6627deace906d80edaefc631, corresponding to

libc-2.19.so on Ubuntu Linux.

32

• Frequency scaling on all CPU cores is disabled.

• The X windowing system is disabled—i.e. the attacker system is running with-

out a graphical interface.

• Nginx logging is off to reduce noise from file system writes.

• The machine was booted with an isolated CPU, using the following argument

to the GRUB bootloader:

GRUB_CMDLINE_LINUX_DEFAULT="maxcpus=2 isolcpus=1"

A further optimization suggested by [15] is to pin the attacker process to a single

core; however this was not accomplished in our setup due to technical issues. Another

suggestion was to set the ACPI settings to avoid lower c- and p-states [44]; this was

not possible on our hardware.

In conclusion, in our experiments on a quiet LAN with an average RTT of 3.2ms,

max_calibration_rounds could be safely set to 100 with nsamples set to 100,

positive_calibrations equal to 10 and negative_calibrations equal to 30.

3.3.3 CPI: Non-Crashing Attack

In Figure 3-3, we see the layout of process memory on an x86-64 CPI-protected appli-

cation. The stack, at the top of memory and growing downwards to lower addresses,

is followed by the “stack gap,” an unallocated region of memory. The next address

which might be allocated is the maximum base address for the memory-mapped

regions often referred to as the “mmap” region due to the corresponding Linux sys-

tem call name. The linked libraries of an application will be mapped at a random

page-aligned address somewhere between the minimum and maximum mmap_base

addresses.

The distance between the max and min mmap_base is the amount of entropy

provide by the operating system’s ASLR implementation multiplied by the system

page size. On x86-64 there are 228 possible start addresses and a default page size

33

stack
higher memory addresses

lower memory addresses

stack gap (at least 128MB)

max mmap_base

random mmap_base

linked libraries

min mmap_base =
max-2^28*PAGE_SIZE

min mmap_base -
size of linked libraries

max mmap_base - 2^42 -
size of linked libraries

safe region
2^42 bytes always allocated

dynamically loaded
libraries,

any heap allocations
backed by mmap

end of mmap region

Figure 3-3: Safe Region Memory Layout

of 4KB. The safe region, with its default size of 242 bytes, is larger than the entire

space available for ASLR and thus will always produce a region directly after min

mmap_base which is safe to de-allocate.

In other words, the CPI safe region in the default published implementation is

so large it dwarfs the entropy available for ASLR on 64-bit systems. We exploit this

fact to produce a non-crashing attack. Starting from the safe dereference location,

we use a side-channel timing analysis to scan page by page until we reach the point

where the C standard library (libc) lies next to the beginning of the next location

which will be used by the linux mmap system call. This non-crashing scan approach

is illustrated in Figure 3-4.

This attack works quite well, but takes a significant amount of time. Recognizing

that ASLR does not change the order in which libraries are loaded, we can optimize

this attack to increment the scan location by the size of the largest contiguous last-

34

4th page scan

5th page scan

…

…

libc

safe region

First dereference loc.
1st page scan

Si
ze

 L

2nd page scan

3rd page scan

Nth page scan
libc found!

…

L

L

L

L

L

4th page scan

5th page scan

First dereference loc.
1st page scan

2nd page scan

3rd page scan

Kth page scan
 libc found!

…

MMAP base

…

Crash!

Crash!

…

libc

safe region

MMAP base

Non-crashing scan strategy Crashing scan strategy

Figure 3-4: Non-Crashing and Crashing Scan Strategies

mapped libc segment (on Linux, the on-disk libc is not loaded in a continuous memory

range; there is a large unmapped gap in the middle). With this optimization, we gain

many orders of magnitude in speed.

The exact number of samples required to find the safe region is a function of the

timing delta produced by the data pointer controlled for the timing side channel.

In our tests only 30 samples per byte were required (recall that our side channel

was 1 � 3µs per iteration). We scanned 7 bytes per region of libc—which in our

experiments was enough to ensure 100% accuracy. The maximum number of libc-

sized scans that might be needed from the known-safe dereference point to the base

of the libc library in the mmap region is then (aslr_entropy ⇤ page_size)/libc_size,

which is 228 ⇤ 212/221 = 219. The total of samples required for the attack is thus

7 ⇤ 219 ⇤ 30 = 110100480. At the previously-mentioned 3.2ms RTT on our test LAN,

we can find the CPI safe region without crashes in 98 hours.

We mentioned earlier that it is sufficient to simply discriminate zero from non-zero

bytes; now we can see why. As we scan towards the libc region, we are only concerned

35
The Lincoln Laboratory portion of this work was sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-05-C-0002.

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

with determining whether we are in a CPI page or a libc page. The CPI pages, due

to the size of the safe region, will almost certainly be filled with zeroes. We pick

offsets into libc that have byte values near the maximum value of 255 to maximize

the difference between libc and CPI memory pages.

In fact, since the safe region is allocated contiguously, after all linked libraries

are loaded, and the linked libraries are linked deterministically, the location of the

safe region can be computed by discovering a known location in any of the linked

libraries (e.g., the base of libc) and subtracting the size of the safe region (242) from

the address of the linked library. A disclosure of any libc address or an address in

another linked library trivially reveals the location of the safe region in the current

CPI implementation. We consider this to be merely an implementation flaw in the

current CPI release, however, and do not rely on it for our attack.

3.3.4 CPI: Crashing Attack

The released default implementation of CPI allocates a safe region with a size of 242

bytes. Since the address space of modern 64-bit architectures is restricted to 48 bytes,

a crashing attack can be easily constructed which guesses the location of the massive

safe region and finds it with 25 crashes in expectation and 26 at most. Simply, this

approach tries each of the possible slots for the safe region, waiting for the web server

to re-spawn a worker process in the event of a crash. Once a slot has been accessed

without a crash, we can employ the strategy from the non-crashing attack to quickly

find the base offset of the safe region. Or we can continue the crashing attack to

quickly find the edge of the safe region and unallocated memory.

However, the released version of CPI for x86-64 has 3 implementations:

1. simpletable: As mentioned, this is the default CPI implementation. In the

simpletable, a massive table of 242 is allocated. Every pointer in the target

program is simply masked to strip the last three bits (since pointers on x86-64

systems must be 8-byte aligned) and then used directly as an index into the

table. Performance overhead is minimal.

36

2. hashtable: In the hashtable implementation, a slightly smaller table is allo-

cated and a every pointer is run through a hash function to produce the index

into the hashtable. The hash function is a simple linear transformation and if

the slot that the pointer hashes to is full, linear probing is used to find the next

available slot. There is a fixed cap on the number of linear probes which will

be performed.

3. lookuptable: The lookuptable allocates an initial directory table, and then

dyanmically allocates subtable pages as needed. Thus every access will touch

two pages in memory: the directory page for the address of the subpage, and

then a subpage for actual value. This page directory system is similar to the

lookups employed by a virtual memory manager.

We have already examined the simpletable implementation, so we next scrutinized

the hashtable implementation. Due to its large size, it was vulnerable to the same

crashing attack. Of course, the initial CPI implementation cannot be expected to be

perfect. Thus we examined the minimal required size of the safe region by running

CPI across the SPEC benchmark suite and decreasing the safe region size by powers

of 2 until the benchmark failed. We made sure to remove the arbitrary maximum

linear probing setting in the hashtable implementation.

The crashing attack is capable of exploiting each of these implementations; sim-

pletable is the easiest and lookuptable is the most difficult.

3.4 CPI Exploitation

The two attacks shown have focused only on finding the base address of the safe

region. However, once we have found the base address of the safe region, we can

compute the address of any code pointer in the target application by masking with

cpi_addr_mask (0x00fffffffff8) and then multiplying by 4, the size of the table entry.

From here it is trivial to modify a safe region pointer and build a ROP chain or target

a library function leading to full remote code execution.

37

3.5 Countermeasures

We postulated a number of potential countermeasures to these attacks, which we

also discussed with the CPI authors. The safe region of CPI can in theory be made

secure from our attacks; the principle question whether this can be done without

compromising CPI’s benchmark performance.

1. Runtime Rerandomization: This attack currently relies on the fact that

Nginx employs a master process which forks to create worker processes with the

same memory layout. A modified architecture could cause the safe region to be

reallocated in a new random location during each creation of a child process.

Aside from the large memory overhead, this technique does not substantially

improve the security guarantees of CPI against an attacker; the number of

crashes required increases only slightly.

Other more extreme rerandomization techniques could be used; for instance,

the safe region location could be periodically shifted even without crashes. The

performance impacts of such a design are unclear, and in general the probabal-

istic guarantees of a rerandomizing CPI are significantly weaker than those of

full memory safety.

2. Randomize Safe Region Location: Instead of relying on ASLR randomiza-

tion, which provides only 28 bits of entropy on x86-64 Linux systems, CPI could

specify a fixed random address using the mmap_fixed argument for its mmap al-

locations backing the safe region. This makes the safe region non-contiguous

with the rest of the linked libraries, eliminating the possibility of the “always

safe” address that we make use of in our non-crashing attack. Unfortunately,

there are a number of problems with this approach.

• The mmap man page states that “the availability of a specific address range

cannot be guaranteed, in general.” The CPI authors might have to write

platform-dependent code to ensure that the random region they have se-

38

lected is available and that they are not interfering with other ASLR tech-

niques, both of which might weaken the security of this approach.

• If an attacker can cause heap allocations above a certain size, the heap

allocations will be backed by mmap; if the attacker can leak these addresses,

the address of the safe region can be inferred by noting where the heap

allocations (presumably contiguous) skip a large range of virtual addresses,

implying the presence of he safe region.

3. Keyed Hash Function for Safe Region: Another potential fix to CPI is

to use the segment registers, which currently hide the base address of the safe

region, to instead hide a key for a hash function into the safe region. The

performance impact of this approach is unknown. Such an approach could still

be vulnerable to attack as a fast hash function will not be cryptographically

secure and an attacker can still read entries from the safe region, which may

allow the eventual computation of the key being used by correlation with known

safe region entries.

4. Shrink Safe Region: Our attacks has taken advantage of the safe region’s

massive size: does it really need to be that large, or was this just an oversight

on the part of the CPI authors? What would the performance impacts of a

smaller safe region be?

We ran a series of tests using the C and C++ SPECint and SPECfp 2006

benchmarks [24] with a range of CPI hashtable sizes. These tests were run on

an a machine with 4GB of DRAM running Ubuntu 14.04.1. We found that once

the size of the hashtable implementation dropped to 226, two of the SPECint

and two of the SPECfp benchmarks ran out of space. Note that we removed

the linear probing limit arbitrarily imposed in the default CPI implementation.

5. Software Fault Isolation: The CPI paper references the use of Software Fault

Isolation (SFI) for other architectures where information hiding is not feasible.

There are also implementations for the now-obselete x86-32 architecture which

39

use hardware segmentation support to isolate the safe region. These are not

vulnerable to our attack. However, unfortunately for CPI, Intel removed the

hardware support for segmentation in the transition to x86-64, and it is also

not available on ARM64 architectures.

Software fault isolation may indeed prevent our attack, however the performance

overhead of such a technique is unknown and may be substantial. This would

not be significant to an evaluation of CPI’s security except that CPI’s novel

feature is its performance. If the performant scheme is not secure, the central

contribution of the CPI technique is lost. By showing that the versions of CPI

which the performance metrics are measured against can be bypassed, we place

the burden of proof on the CPI authors to show a viable secure and performant

implementation.

40

Chapter 4

Effectiveness of Ideal Control Flow

Integrity

4.1 General Limits of Control Flow Integrity

4.1.1 Background

We next set out to characterize the limits of an “ideal” CFI scheme. Most modern

CFI schemes are limited by practical considerations, as precise enforcement of CFI

introduces substantial overhead [5, 7]. A CFI scheme with even only 50% overhead

is typically considered unacceptable in industry, and thus many CFI schemes have

compromised by providing a coarse-grained protection which has lower performance

impact—but also lower security guarantees. However, these coarse-grained implemen-

tations have all been shown to have enough flexibility to allow an attacker to achieve

Turing-complete computation leading to exploitation [23].

Given this fact, attention has turned to building “fine-grained” CFI schemes which

can still meet the tight performance requirements needed for a generalized solution.

Google’s forward-edge CFI [45] enforces fine-grained policies on forward-edges, but

ignores return edges. Cryptographically enforced CFI [31] uses cryptographic message

authentication codes with a secret key hidden in a dedicated register to verify the

authenticity of pointers and prevent transfers with injected addresses.

41

None of these techniques are perfect, but we decided to investigate a more funda-

mental question: taking the strongest CFI technique we could imagine—regardless of

the performance costs–might there be ways to attack it?

We decided to examine an idealized, hypothetical CFI design to characterize the

maximal security guarantees of CFI. Since we are unconcerned about the runtime

performance of the CFI policy, we can allow a full shadow stack (to prevent backward-

edge attacks) and an unlimited number of tags for function calls (to prevent forward-

edge attacks). Although previous work exists such as Out of Control [23], which

showed that gadgets enabling RCE can be found in a two-tag system created out

of the pairings of all valid call and entry points, no work has yet examined such an

idealized CFI design.

Assuming this theoretical idealized CFI design, we attempted to discover whether

control-flow attacks were still possible. We found that they are possible, and devel-

oped a new attack that we termed Control Jujutsu [20], which exploits the incom-

pleteness of scalable pointer analysis and the patterns used in software engineering

best practices to enable an attacker to exploit sufficiently large programs and cause

arbitrary malicious code execution—even in the presence of our ideal CFI design.

4.1.2 Sound and Complete Pointer Analysis

For simple programs without complex modularity or functional composition, the con-

trol flow graph can be statically and precisely determined. However, the real-world

programs that CFI needs to work on are anything but simple.

The forward-edge protection of a CFI scheme is only as strong as the static analysis

used to inform the model of the program CFG. Most CFI papers focus their attention

on describing how to create CFI schemes that are efficient enough to be practically

useful, assuming the static analysis will produce an accurate CFG that can be enforced

on the program without (1) producing false positives and (2) without allowing any

program exploitation.

To produce such a CFG, we would ideally use a sound and complete points-to pro-

gram analysis algorithm. Unfortunately, it has been shown that sound and complete

42

points-to analysis is undecideable in general [38]. Thus to perform general points-

to analysis, one must compromise either soundness or completeness. An incomplete

analysis will produce extra edges in the CFG that might allow an attacker to slip

through. An unsound analysis will under-approximate the true program CFG, which

would break program functionality by producing false positives—clearly undesirable

for a CFI technique. Thus for CFI schemes typically an incomplete but sound scheme

is used. This works well for program analysis, but is insufficient to protect against an

creative adversary attempting to exploit a targeted program. We show that state-of-

the-art static analysis techniques leave enough flexibility in the CFG for an attacker

to achieve arbitrary code execution. We use the best available such scheme, the

state-of-the-art DSA pointer analysis algorithm [29], in our evaluation.

4.2 Attacking Ideal CFI

Specifically, we analyzed two large, popular open-source web servers (Apache httpd

and Nginx) and find that the CFG constructed by static analysis is large enough that

we can still achieve code exploitation.

To accomplish this attack, we find pairs of Indirect Call Sites and functions that

provide Remote Code Execution (RCE)—existing program functionality designed to

extend the program or make external commands which can be used as a basis for

arbitrary remote code execution. We use these pairs as a kind of “gadget” and call

them Argument Corruptible Indirect Call Site (ACICS). Note that in our case we

show the more difficult task of remote code execution, which imposes an additional

requirement that the exploit we show be triggerable by external input.

We use ACICS gadgets to (1) enable data (argument) corruption of an indirect

call site that in conjunction with the corruption of a forward edge pointer (2) direct

execution to a target function that when executed provides arbitrary code execution

(e.g., system calls). We show that for modern, well-engineered applications, ACICS

gadgets are readily available as part of the intended control transfer.

43

4.2.1 ACICS Discovery Tool

We developed a tool we termed the ACICS Discovery Tool (ADT) to find these ACICS

and characterize their exploitability. ADT dynamically instruments applications us-

ing the GDB 7.0+ reverse debugging framework. It is implemented as a Python

extension to GDB itself. The algorithm for the tool is as follows, also illustrated in

Figure 4-1.

call *x (y)

r.xyz
r.abc

r.handler
r.len

HEAP

x = r->handler y = r->len

valid_target_1(y)

valid_target_2(y)

valid_target_3(y)

malicious(y)

(2) Backward dataflow
analysis

(3) Determine Last Write IP
(4) Corrupt Function Pointer and Arguments

(5) ACICS Validation

(1) Reach ICS

Figure 4-1: ACICS Discovery Tool

Algorithm For each ICS identified in the target program our ACICS detection tool

performs the following procedure:

1. Read the ICS breakpoint given as input, target_ics

(a) Set a breakpoint at target_ics

(b) Set a special breakpoint at the entry to the function containing the target_ics.

This is a “reverse execution” breakpoint provided by our plugin. When hit,

44
The Lincoln Laboratory portion of this work was sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-05-C-0002.

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.

this breakpoint will enable GDB’s process recording functionality, allowing

us to run process execution in reverse if we hit the ICS breakpoint.

2. Run the program with the debugger:

(a) Start the target program

(b) Wait until the target program has finished starting, then run a suite of

exercise programs.

(c) Start a program that will interrupt GDB if after a fixed timeout is reached

(useful for cases the ICS is not exercised)

3. This step corresponds to Figure 4-1-1. If the ICS breakpoint is not hit: report a

failure to exercise the ICS and end evaluation of this ICS. If the ICS breakpoint

is hit: perform the backward dataflow procedure (see Section 4.2.2) on the

ICS target register and the x86-64 argument-passing registers rdi, rsi, rdx,

rcx, r8, r9.

4. This step corresponds to Figure 4-1-2. For each pointer identified as the source

of the backward dataflow procedure:

(a) Find the memory region in the Linux process memory map (/proc/pid/maps)

that the pointer corresponds to. Report the categorization of the pointer

as stack, global, heap, or note an invalid pointer (typically implying a

backward dataflow failure).

(b) Reset the debugger and repeat Steps 1–2 after adding a special hardware

watchpoint on the pointer and continue. This hardware watchpoint is

provided by our plugin and will record the number of number of writes

to the pointer from each instruction pointer. Once we reach the target

ICS breakpoint, stop and report the last instruction pointer and number

of writes. This step corresponds to Figure 4-1-3.

(c) Reset the debugger and repeat Step 4b until a breakpoint on the last in-

struction pointer is observed. Continue until the number of hits on the

45

breakpoint is equal to the number of writes from Step 4b. Now we know

that the pointer is live until it is used at target_ics, and this ICS is offi-

cially an ACICS. Therefore it is safe to corrupt the pointer. Additionally,

if we are willing to track every statement executed between now and the

target_ics, a lower bound of the liveness of the ACICS can be established.

Now we corrupt the pointer; if the pointer is the function pointer, we

change it to a malicious target function; if it was an argument, we can set

it any valid memory location containing a unique value that we will verify

when we arrive at the malicious function. If our dataflow algorithm failed,

sometimes the pointer will not be valid and the memory cannot be written;

report a failure in this case. This step corresponds to Figure 4-1-4.

5. Set a breakpoint at the malicious function and let the program continue execu-

tion. If we arrive at the malicious function, we will note that control flow was

succesfully redirected for this target_ics.

6. Testing if the arguments to the malicious function match the expected values

set in Step 4c.

7. Finally, as a sanity check we ensure that the malicious function was executed

by checking some external state (a remote webserver receeived a request from

out hijacked application, a file was created, etc).

4.2.2 Reverse Dataflow

Figure 4-2 is a psuedocode representation of our simple backward dataflow algorithm.

The goal of this algorithm, which operates within the debugger, is to find the memory

address from which the forward edge pointer originated. For example, in Figure 4-1,

the dataflow algorithm called on input x would produce the address of r.handler.

This is done by iteratively stepping back in time (reverse debugging) and examining

any instruction that modifies the register which originally held our function pointer.

We assume that the instructions involved in the dataflow of the target function can

46

Input : The target ICS instruction icsinst .
Input : Prev , a function that returns the previous instruction (or NULL if not available) before a given

instruction.

Output: The memory address that stores the call target or NULL if failed

1 if icsinst is the form of “call REG[i]” then
2 r � i

3 else
4 return NULL

5 inst � Prev(icsinst)
6 while inst 6= NULL do
7 if inst modifies REG[r] then
8 if inst is the form of “REG[r] = a ⇤ REG[i] + c” then
9 r � i

10 if inst is the form of “REG[r] = ⇤(a ⇤ REG[i] + c)” then
11 return a⇥ regv(i) + b

12 inst � Prev(inst)

13 return NULL

Figure 4-2: Backward dataflow analysis to identify the target address

be represented as the composition of linear functions and dereferences, and report a

dataflow error if this does not hold. Once we have found a function which dereferences

a memory location, we use a linear function modeling that instruction to compute

the source address of the forward edge.

The actual GDB plugin code adds many additional checks, such as an assertion to

ensure that the forward edge pointer value at the ICS matches the value observed at

the computed source memory address which is the output of the backward dataflow

procedure. The typical use case that our algorithm find is the lookup of a member

element from a struct pointer; such as x->y; more levels of indirection such as x->y->z

are not currently covered.

In general, however, a failure in the dataflow will be obvious by our algorithm

failing to hit the target function in Step 5 of the overall algorithm.

4.2.3 Discussion

The number of viable ACICS reported by this tool is a lower bound for several reasons.

First, our simplistic dataflow analysis will report that ICS do not have corruptable

arguments in the case of multiple levels of indirection. Second, the ACICS detection

tool works best when the execution environment is deterministic. It will not report

incorrect results in the case of non-determinism; it will simply underreport the number

47

of ACICS. Third, the number of viable ACICS might be expanded by examining

unintentional arguments—pointers left in registers from previous function calls which

might become relevant again if a function pointer were changed to point at a higher

function of higher arity.

4.2.4 ICS Instrumentation Tool

We developed another tool, also using the GDB debugging framework, capable of

setting hardware watchopints on all indirect call sites and then recording the pointers

observed as forward edges at those call sites as well as the addresses of all arguments

passed in calls. The tool assumes a fixed upper bound on the number of arguments,

as it would require inspection of the source code to determine the exact number of

arguments being used—a measure which would also be invalid for functions with

variadic arguments.

This tool could also have been implemented as an LLVM plugin, but it was more

convenient to retrofit the GDB framework already being used for ACICS discovery

to accomplish the task. We used this tool to survey the ICS in the program and

understand the locations and functions of the most frequently used call sites.

4.3 In-CFG Attack Examples

We next used our tools to develop an attack against an idealized CFI system in the

Apache HTTPD web server.

4.3.1 Threat Model

We assume a remote attacker with knowledge of the software versions present on the

target machine and knowledge of a memory corruption vulnerability that allows the

attacker to corrupt values on the stack, heap, or data segments. On the defensive

side, we assume an “ideal” CFI scheme as discussed earlier with unlimited tags for the

forward edge an infinite shadow stack to protect return edges. Additionally, we assume

48

the existence of the write xor execute and ASLR exploit mitigation mechanisms.

4.3.2 ACICS in Apache

We found 172 indirect calls sites in the unoptimized, dynamically-linked Apache httpd

binary. We limit our evaluation to the core binary, omitting potential ICS sites and

targets in other Apache modules such as the Apache Portable Runtime (APR) library

and the APR-util library.

Our requirements on the 172 ICS to be Argument Corruptible Indirect Call Sites

are as follows:

• The ICS is exercised by external input into the program (e.g. a network request

in Apache’s case)

• The forward edge pointer and its arguments at the ICS must be visible during

a code path exercised by an internal program input. Practically, this means

that the forward edge pointer and its arguments should be on the heap or static

globals so that they are visible at any execution point in the program.

• After we corrupt the ICS arguments in a path triggered by external input, the

program should not crash or overwrite the arguments before reaching our target

function.

Total ICS 172
Exercised in HTTP GET request 20

Exercised during startup 45
Unexercised 121

Table 4.1: Indirect Call Sites Dynamic Analysis
Number of ICS dynamically encountered 51

Detected forward edge pointer on the heap/global 34
Automatically corrupted forward edges 34

Automatically corrupted forward edges + arguments 3

Table 4.2: Automatic Corruption Analysis

Table 4.1 shows test suite coverage of the ICS sites. Table 4.2 shows the results

of our automated ACICS discovery tool running on the HTTPD binary.

49

We examined the location of the 172 ICS sites inside the Apache source to look for

commonality and patterns. 108 of the sites are related to the Apache library’s “hook”

system. This is Apache’s generic mechanism allowing the registration of function

pointers in structures for later callbacks. Every function pointer in the hook system

is stored inside a global struct named _hooks, which is live across the lifespan of

the Apache worker process—an ideal quality for our attack. Furthermore, most of

the points calling function pointers in the hook structure have arguments which are

themselves visible across the lifecycle of an Apache web request—for instance the

ubiquitous request_rec * r argument.

After identifying viable ACICS sites, we construct an exploit as a proof of concept.

We choose the ACICS at ap_run_dirwalk_stat, which meets every requirement we

have and is exercised in every HTTP GET request. Having picked the ACICS where

we can control the target and the arguments without crashing the executable, we now

choose an appropriate target function to redirect control flow to.

4.3.3 Target Functions in Apache

An ideal target function has minimal requirements on its control flow before it makes a

powerful system call, such as system or exec, using one or more of its arguments. The

principled way to find such target functions would be a backwards reaching dataflow

analysis from each potentially dangerous system call to the entry point of the function

containing it to identify constraints, and then an analysis of the control flow graph

to identify functions calling it. We performed a simplified, heuristic version of this

analysis to measure the distance between a function and a function containing this

class of system calls. The results of this analysis are presented in Table 4.3. Previous

work found similar results for the Windows platform [23].

For our Apache exploit, we use the piped_log_spawn function, which is two steps

away in the callgraph from an exec call.

50

Direct calls to system calls 1 call away 2 calls away
4 13 31

Table 4.3: Target Functions Count Based on CallGraph distance

4.4 Defenses

4.4.1 Static Analysis within Type System

One principled defense to our attack is a strict runtime type-checking system. There

are a number of practical difficulties with building such a tool–principally the devi-

ations from the C standard that are common in real-world C programs. However,

if we assumed such a tool had implemented correctly and were not concerned with

breaking program functionality, would it necessarily stop Control Jujutsu attacks?

We developed another tool to analyze the function signatures observed between

large bodies of code. This tool involved a compiler shim which recorded the com-

piler arguments passed for each compilation unit during the invocation of an overall

project build. Thus preprocessor directives and other flags which might influence the

interpretation of a source file were properly respected.

With this information captured, we invoked Clang 3.6.0’s parser API in libclang

to parse the C and C++ files of an application and extract any function signatures or

indirect call signatures, passing the appropriate arguments captured in the previous

step as mentioned. Table 4.4 shows the results when we ran this analysis on Apache

HTTPD 2.4.12, APR 1.5.1, BIND 9.10.2, vsftpd 3.0.2, and Nginx 1.7.11. These results

include linked headers from standard and application libraries as their functions must

be included in the list of valid targets.

Number of unique... HTTPD+APR BIND vsftpd Nginx
...function names 9158 10125 1421 2344

...function signatures 5307 5729 730 1135
...indirect call signatures 117 135 5 3

...aliased signatures 81 27 5 2
...aliased functions 553 328 68 119

Table 4.4: Matching ICS & Function Signatures

51

In Table 4.4, “unique aliased signatures” means the number of signatures which

exactly correspond to at least one indirect call and at least one function declaration.

“Unique aliased functions” refers to the total number of functions—as opposed to

function signatures—which might be targets of these indirect calls sites. If an ACICS

existed for each aliased function signature, the aliased functions count is the number

of functions the ACICS could legitimately target while respecting the constraints of

the runtime type-checker. Obviously many of these are intentional targets, but the

number of unintentional aliases cannot be reliably determined without programmer

annotations.

4.4.2 Connection to Programming Language Constructs

One might hope there are a few outlying conventions or behaviors that programmers

could be instruction to avoid in order to produce programs with CFGs that are

immune to this attack. Unfortunately, the emphasis in software engineering best

practices on modularity and abstraction is often exactly what enables our attack to

succeed.

1 struct apr_bucket_type_t {

2 const char *name;

3 int num_func;

4 void (*destroy)(void *data);

5 ...

6 };

7
8 struct apr_bucket {

9 const apr_bucket_type_t *type;

10 apr_size_t length;

11 apr_off_t start;

12 void *data;

13 void (*free)(void *e);

14 ...

15 };

Figure 4-3: bucket_brigade declarations in APR-util

Consider for example the Apache bucket brigade mechanism. Figure 4-3 shows the

definition of the bucket brigade structure, part of Apache’s custom memory manager.

Macros such as bucket_brigade_destroy in the Apache utility library are called

extensively by the Apache HTTPD source. When we examine the definition of this

52

1 # define apr_bucket_destroy(e)

2 do {

3 (e)->type->destroy((e)->data);

4 (e)->free(e);

5 } while (0)

Figure 4-4: bucket_brigade_destroy macro definition in APR-util

1 result = xfr->stream->methods->next(xfr->stream);

Figure 4-5: Example call from BIND xfrout.c

macro, shown in Figure 4-4, we find that it is making use of the bucket brigade

structure in an object-oriented fashion, calling methods in the struct and passing

other members of the struct as arguments. Clearly, this pattern is vulnerable to

exploitation. If an attacker corrupts a bucket brigade structure, the static analysis

cannot determine the limited set of function pointers that should be allowed. The

situation is analogous to a virtual table pointer overwrite in C++, but without the

support of the C++ type system to determine the allowed function pointer entries.

We found this pattern of extending C was common in complex programs. For

instance, BIND has a very similar structure which is used extensively and contains

a mix of code and data pointers, which the points-to analysis has little hope of

restricting. An example call from BIND showing the C++-like use of this structure

is shown in Figure 4-5.

Fine-grained CFI schemes which can make strong guarantees about typical C

programs will fail to account for cases such as this and other higher-level patterns

implementing, without language support, object-oriented techniques.

Clearly the principled solution to this problem is programmer annotations, The

duality of code and data in modern programs, and languages such as LISP, explicitly

listing the allowed targets for every function pointer reference, make this a difficult

problem for CFI schemes to solve for programs in general.

53

54

Chapter 5

Tagged Hardware Architecture

5.1 Background

The second component of this work is an evaluation of the minimal set of tag bits and

policies needed to provide a practical defense against code reuse attacks on supporting

hardware. Our overall goal is to determine whether a set of minimal control-flow

policies could be defined which prevent code reuse attacks. Once such a set of policies

have been identified, could they be efficiently implemented via hardware support and

then perhaps be turned into hardware extensions to modern architectures?

Specifically, we evaluated several tag encodings and policies on a RISC-V archi-

tecture which we modify to provide tag support. In parallel, we developed compiler

infrastructure for the C and C++ languages to support the initial tag mappings.

If we implement this tagged memory-safety system correctly, we will have dramat-

ically increased the difficulty required for an attacker to exploit a vulnerability: the

attack surface is limited to temporal memory vulnerabilities (use-after-free), bad cast-

ing vulnerabilities [30], data-flow or logic vulnerabilities, and the integrity of tag files.

Of course, attacks that exploit flaws in the hardware-level, such as the Row-Hammer

attack on physical memory, [25] are not addressed by our approach.

55

5.2 RISC-V Extensions

There are several options–MIPS, x86, ARM–when considering an architecture to base

our tagged extensions on. We chose the new RISC-V ISA, a novel, modern, fully open-

source competitor to architectures such as ARM64. Our group in parallel with the

Cambridge lowRISC project [12] has added tagged extensions to the new RISC-V

ISA.

The lowRISC project’s focus has thus far been on defining the hardware of a

tag-extended architecture; our focus has been on defining policies for that hardware.

Since our interest is in the policies and their interaction with modern software appli-

cations, we began by modifying Spike, the “golden” reference emulator for the RISC-V

architecture to explore the impact of our modifications,

We add a register file in which each register has been extended with bits to store

the tag. The L1 and L2 caches of the RISC-V architecture implementation are sim-

ilarly extended. A cache miss will, in addition to reaching out to main memory,

perform in parallel a lookup in a specialized tag cache. If the tag is not in this tag

cache, there is an additional performance penalty in the form of a second access to

main memory to fetch the tag.

We extend the RISC-V registers to support an arbitrary-width tag. We then

modify all of the instructions available in the CPU to support passing this tag. For

simple instructions such as mov, this support is easy. For other instructions, such as

binary and unary arithmetic operations, the proper flow of the tag is policy-defined

and the implementation is left in a policy-dependent file via macros.

We then continue the development work by building tag-supporting versions of

the GCC and LLVM compilers provided by the RISC-V project. We add several new

instructions to these compilers:

• settag: This sets a given memory location to have a particular tag value. Our

mappings between tag names and their integer values are implemented as C

preprocessor macros.

• tagenforce: This instructions turns the enforcement of tag policy (specifically,

56

tag propagation and policy-generated traps) on or off.

1 # ifdef __riscv

2 // Set the tag on the register that mem is located.

3 // Additionally, store this register so that when it is

4 // reloaded (which is likely to happen immediately)

5 // the tag is correct. -24(s0) is what is generated

6 // on the store, so we match it unintelligently here.

7 if (is_fptr) {

8 __asm__ __volatile__ (

9 "settag %0, 2\n\t"

10 : "=r"(mem)

11 : "r"(mem));

12 } else {

13 __asm__ __volatile__ (

14 "settag %0, 1\n\t"

15 : "=r"(mem)

16 : "r"(mem));

17 }

Figure 5-1: settag macro in tag_extensions.h

We implement the addition of these new instructions in GCC and then use wrap-

ping them in macros using inline assembly, as shown in the excerpt in displayed in

Figure 5-1.

We modified the other instructions in several broad categories:

• move instructions: Move instructions always propogate the tag to the desti-

nation; it is policy-dependent whether they also strip the tag from the source

register or memory location.

• binary arithmetic instructions: Policy-dependent.

• unary arithmetic instructions: Policy-dependent.

• floating point instructions: Floating point instructions do not propagate tag

information.

Having developed underlying infrastructure based on RISC-V, we continued by

developing tag policies to prevent code reuse attacks.

57

5.3 RISC-V Tag Policies

5.3.1 Basic Return Pointer Policy

We begin with a policy that adds a return pointer tag to the return address stored

before a call instruction executes. RISC-V does not have a call primitive, instead using

the jalr instruction, so this instruction is the only one that needs to be modified in

order to effect this change.

In this policy, return pointer tags are copied on move, store, and load, but not

arithmetic operations. Whenever a return instruction is encountered, the return

register is checked for the return tag. If the tag is not present, a trap is generated.

This policy was easy to implement and generated relatively few exceptions. It

prevents an attacker from using traditional methods to forge return addresses. The

cases where this policy ran into difficulty were virtually identical to the cases where

traditional CFI work enforcing shadow stacks has difficult (see Section 2.3.

First, signal handling code generates a return address which is used to jump

to trampoline code; we added a blessing settag instruction in the signal handling

code, which is a slight but reasonable increase in the trusted code of the process.

Even with this exception, our tag system is still not vulnerable to sigreturn-oriented

programming [11] attacks.

A second difficulty is C++ exceptions. Our team manually patched the GCC

library binary, libgcc_s.so.1, to add code to bless the return addresses generated

by the exception handler. This is also a slight increase in the trusted code base.

This return pointer policy is basic but still quite strong compared to many other

code reuse defenses discussed previously. It prevents all current ROP attacks and

mechanisms because an attacker can never inject an address into the exeuctable which

will be interpreted as a return pointer. However, an attacker can “clone return ad-

dresses, which may be enough to achieve arbitrary code execution. For instance, an

attacker with control of the arguments to memcpy can overwrite return addresses on

the stack by copying existing return addresses from the stack or main memory. The

viability of this attack to actually create working exploits depends on the stack depth

58

at attack time and whether a program is saving portions of the stack in main memory.

Thus RCE attacks are unlikely, but perhaps a more restrictive policy can provide even

stronger security guarantees.

5.3.2 Linear Return Pointer Policy

We next implemented a “linear” return pointer policy. In this policy, there is only

one usable copy of return pointer in the process memory at any given time. Loading

and storing a return address from and to a register adds the return-pointer tag to the

destination, but strips it from the source. Just as in the basic return pointer policy,

to be used in a return instruction, the return register must have the correct tag. In

contrast to the basic return pointer policy, the linear policy requires that arithmetic

or logic binary or unary operations remove the tag on the source register.

This policy is quite powerful, providing all the guarantees of the basic return

pointer policy but also addressing in a principled way prevention of the replay attacks

previously mentioned.

In addition to the exceptions of the basic return pointer policy, there are a number

of new exceptions which must be carefully accounted for when implementing these

policies:

1. One exception to the removal of the destination register’s tag is non-usespace

code such as the fork system call. Since fork is expected to create a new

process, it is acceptable for the kernel to make a copy of the register with the

tags preserved for the new process. In general we allow non-userspace code to

ignore the linearity restriction of this policy.

2. The C standard library’s error-handling system, the setjmp and longjmp func-

tions, require careful handling. The setjmp function saves the current stack,

including return addresses, into a buffer, which longjmp can then restore. How-

ever, the restore from longjmp cannot strip the tag from the buffer, as longjmp

may be called again. A principled solution to solve this problem is not possible

without modifications to the C standard library and refactoring of applications

59

using these two functions. However, we weaken our security guarantees slightly

by building special versions of setjmp and longjmp which ignore the linear-

ity policy and instead applies the basic return pointer policy. Our security

guarantees are weakened somewhat in that if an attacker gains control of the

instruction pointer while a setjmp-created buffer is live on the stack, the at-

tacker may be able to control the arguments from setjmp and longjmp and

construct a replay attack. However, it seems unlikely that most programs are

vulnerable to this sort of attack in general, and the attack surface is greatly

reduced.

5.3.3 Function Pointer Policy

We also designed a function pointer policy, which is described at length in Chapter

6.

5.4 RISC-V Policy Test Framework

We developed a powerful, full-featured test framework to evaluate the impact of our

policies on test scripts, small programs, and full applications.

To setup our test environment, we first compiled a version of Linux that could run

in the Spike emulator. We installed the busybox [46] userspace on top of the Linux

kernel, a minimal userspace that provides a shell and some common GNU utilities

with few extraneous utilities. We wrote a script, run_in_spike_linux.sh, which

wrapped all of this functionality to act as an interface to our testing rig.

The testing environment is capable of characterizing the output of given program

across various policies enforced inside the Spike emulator. The testing tool compiles

the program, copies the program into the Spike emulator, and then boots the Spike

emulator running our Linux busybox setup and runs it. The full output and return

code are recorded and compared to the expected test output. A matrix, shown

in Figure 5-2, is produced, which shows whether the program output matched the

expected test output for each policy defined in the testing rig.

60

Figure 5-2: RISCV Policy Evaluation Test Matrix Excerpt

This framework was key in identifying compatibility issues and then verifying that

we had successfully fixed them through the use of targeted test-cases.

61

62

Chapter 6

Compiler Support

6.1 LLVM Design Decisions

To support the function pointer policy, we add passes to LLVM project that track

the flow of any address-taken values of any function, instrumenting them so that the

introduction of a constant corresponding to a function address will be immediately

tagged as a code pointer. We add support to the hardware policy engine to enforce

policies on these code pointers and instructions to create them. Our tag-supporting

processor will pass on the function pointer tag to any any static, global, or local

variable which the function pointer might be copied to.

This approach differs from other recent code-pointer protection techniques for

multiple reasons. First, it is implemented in hardware. Second, it is seeded with

a dataflow analysis produced by the compiler. The compiler knows the provenance

of any constant in the source code; our analysis finds all constants with provenance

including a function address or a block address, which is the address of a basic block

used as a interproceedural jump. This is in contrast to schemes such as Code Pointer

Integrity which must rely on the C type system to identify protected function pointers.

63

6.2 Compiler Support Component: Find All Func-

tion Addresses

Function and block addresses can be encoded the following locations:

1. Emitted as immediates of the program text, corresponding to values which will

eventually be used as call or jump targets.

2. As values in the symbol table section of the ELF executable.

3. It is possible for function pointers to be emitted in the rodata or data segments

of an ELF executable, although our test programs with the LLVM project’s

Clang compiler did not observe this in practice.

4. Dynamically generated by functions such as dlopen and dlsym, which convert

names of functions in foreign modules to the addresses of those functions so

they can be resolved and called at run-time.

Our strategy for handling these cases is as follows:

1. The first component of the compiler suport is an LLVM pass over every function

in the module (a module is a compilation unit in LLVM parlance). For each

function, we find the LLVM::Users of the function address. For each User,

we append it to a list in the hash table with the key as the function that the

use took place in. Once this table is complete, we go through every function

key in the table. For every item in the list, we create a new instruction using

the function pointer at the early possible point in the function. We mark this

instruction as volatile so that it won’t be optimized out, as it has no side effects.

Immediately after this instruction we add a call to settag.

An exception is made if the use is direct, e.g. a LLVM _call_ instruction using

a function pointer will translate into an direct call using an immediate, and we

do not need to add a blessing settag.

64

One item of future work for this pass is properly handling inline asm code,

which may be a problem in applications which use hand-coded assembly.

2. The second component of the compiler support has not been fully implemented;

what we describe here is our design.

For every entry generated in the procedure linkage table (PLT), we imagine

adding a settag instruction. Every entry in the global offset table (GOT)

should receieve a special function pointer tag which decays after one arithmetic

operation; one arithmetic operation; i.e. after the GOT entry is added to a

base address, the function pointer tag persists but is no longer permitted to

propagate through arithmetic instructions.

This could pose compatibility problems if a program expects an array of function

pointers in the GOT and iterates over one, adding an different offsets directly

to the pointer value multiple times.

The system loader will then modified to support reading these symbols and

marking them with a code pointer type. One implementation of the tag file

could be to reuse the DWARF debugging symbols typically generated for a

ELF executable, and rename symbols which are used as code pointers with a

prefix indicating that they should receive that tag. The loader would then scan

for symbols matching the agreed upon pattern, and as they are loaded into

the .bss or .static segments use machine-specific instructions to give them

the specified tag. An obvious disadvantage of this approach is that it requires

promoting every static or global variable to an externally visible symbol.

6.3 Alternative Compiler Designs

We considered, and rejected, several alternatives to this design, which we describe

here to contrast our approach with related work:

• CPI-Style Static Analysis: We might instrument all types in the program

and automatically tag data that flows into variables with those tpyes. This is not

65

ideal however, as we know we only want to bless the value at first initialization.

Any static or global variable (such as a void *) which the compiler gave the

designation “code pointer” should be registered only once.

• Replace Every Variable: All symbols which are users of a function address

or block address will be replaced with a renamed symbol designating them as

a function pointer. We could have replaced every constant which is a code

pointer with a pass that creates a new temporary, moves the constant into

the temporary, and then blesses it with the function pointer tag via a settag

instruction. Unfortunately, this does not work because in LLVM one can’t

replace a constant with a non-constant (this is because other constants might

depend on the value of that constant, apparantely). Additionally, this would

typically end up replacing the constant right before each use.

• Create A Constants Table: We could have created a table of constants

somewhere in the program section. We would then have had to insert a stub

before the program runs which blesses those constants. This would have less

overhad than our current approach, but is less simple to implement in LLVM.

• Add Blessing Flags To Instructions: A simpler approach is, if supported by

the underlying architecture, to simply add a bit to any instruction that contains

an immediate derived from a code pointer type. The hardware policy can then

be that if an instruction is executing and the code pointer tag bit is set on it, the

result of the instruction should have the code pointer tag set. One complication

is that in LLVM bitcode, a single statement may expand to multiple assembly

lines. So for instance .call (x, y, z) where z is supposed to be a function

pointer would incorrectly set x and y to have function pointer tags as well. This

is undesirablly imprecise.

66

6.4 Function Pointer Policy

Once we have properly implemented function pointer passes which set the tags in

an executable appropriately, we design a function pointer policy for our processor to

enforce.

In the basic function pointer policy, function pointer tags are moved on store

and load. They are propagated through addition and subtraction with non-function-

pointer-tagged data, but not through other arithmetic or logical functions. This is

to avoid the unfortunately common practice of pointer arithmetic often employed by

C programmers; such violations of the C standard are almost idiomatic in many C

codebases as extensively documented in [14].

Before an indirect call, the processor checks that the register being called through

has the function pointer tag. If not, the hardware raises a trap.

We were able to verify that this worked successfully on small programs; however

a full implementation needs the following features, which are left to future work:

• C library support for handling calls such as dlopen and dlsym. Presumably test-

ing a large corpus of C programs would also reveal frameworks which have im-

plemented similair functionality outside of the C standard library, which would

require refactoring to avoid spurious traps.

• As previously mentioned, ensuring the proper marking of globals and PLT and

GOT entries is critical to avoid spurious traps from library and interprocess

calls.

6.5 Function Pointer Policy Evaluation

A function pointer policy preventing the attacker from directly injecting function

pointers would immediately stop a range of wide range of attacks such as virtual

table overwrites and use-after-free (asuming integration with the memory deallocator

that strips tags from freed memory).

67

In theory, a strictly enforced function pointer policy—particularly in conjunction

with a strict return pointer policy—might approach the security guarantees of full

memory safety. However, as implemented our policy leaves some attack surface area,

though we believe it is greatly reduced compared to the status quo. Attacks are still

possible by mixing with data; e.g. replay attacks or attacks in which an attacker

cannot forge a code pointer directly, but can add or subtract with injected data to

produce a usefully malicious pointer. By evaluating the compatability effects of the

policy in future work, we hope to further reduce this attack surface by producing a

linearity function pointer policy or even stricter variations.

68

Chapter 7

Future Work and Conclusion

7.1 ACICS Improvements

Much interesting work remains in the field of automatically detecting ACICS sites and

building viable exploits in an automated fashion. If fine-grained CFI schemes become

the norm, identifying such sites will become an important part of future offensive

security research in the same way that ROP compilers entered public consciousness

as ASLR defenses grew in popularity.

Specifically, an ACICS detection tool would benefit from a true backwards-reaching

analysis, as opposed to the heuristic approach shown in this work. This would be bet-

ter served by using a binary instrumentation framework, such as PIN [40] for instance,

which has better guarantees regarding lack of impact on the executing program.

Furthermore, it would be highly beneficial to integrate with the test suites of

larger programs to experiment with viable inputs. We attempted to do this with

Apache and their web server benchmarking tool, but ran into compatibility issues

when running their tools under GDB.

Additionally, we would benefit from an automated tool to find target functions.

This is difficult in the general case, but a subset of program locations with functions

that call dangerous system calls using parameters found in arguments to the function

would be a low-hanging fruit. Perhaps work which relaxes constraints on symbolic

execution [39] can provide a basis for efficiently finding such paths.

69

In the end, we believe that if CFI becomes widely deployed, future work will focus

on building a tool that is to fine-grained CFI schemes as a ROP compiler is to ASLR;

such a tool would rapidly take a vulnerability and characterize which ICS, if any, can

be used as ACICS for that vulnerability.

7.2 Hardware and Policy Improvements

The function pointer policy does not yet consider functional programming languages

that might be compiled to LLVM intermediary representation, as well as newer fea-

tures such as C++ lambda functions. If a function does not have global visibility,

but can still influence control flow, how should it be handled? LLVM contains a type

for std::function, which would currently not show up in our globals analysis and

needs to be properly handled.

Furthermore, our function pointer policy is relatively simple to implement for C

but needs deep library support for C++ objects; the virtual table layout in memory

as well as functions such as constructors, copy constructors, and deconstructors all

need to be modified to be tag-aware in order to maintain proper security guarantees.

As previously mentioned, it would also be highly beneficial to test tag policies

with larger programs. We are currently prevented from doing by bugs in the RISC-

V ports of LLVM and GCC; for instance, we could not compile Nginx successfully.

Future work should examine Nginx as well as Apache, BIND, and other popular server

applications which are often targets for remote attack.

In future work, the tagenforce instruction might enable a mode which perma-

nently turns on tag enforcement for the current process. More generally, it might

selectively enable different policies for different applications or even application sub-

components. For instance, an application author might know that a certain module

of their software can run with the strictest possible hardware-enforced pointer policies

and enable it for that module—while another module might need to perform just-in-

time compilation and strange control flow operations which would violate any policy

we have defined. Aside from security segmentation, dynamically enabling policies also

70

has the advantage of allowing better backwards compatibility—programs or program

parts which generate false positive traps when under restrictive policies can be run

under less restrictive versions until they can be adapted by their authors.

7.3 Conclusion

In our modern world where the number of devices interconnected via the Internet

is already in the billions and rapidly growing, the need for new computer defenses

will only increase. This work underscores just how difficult and sometimes subtle the

development of defenses preventing program exploitation can be.

We have seen that current CFI schemes are seriously flawed, both in practical

realization and also, unfortunately, in their assumption that enforcement of ideal

CFI techniques will be able to stop attackers. Our Control Jujutsu attack provides

a powerful algorithm that attackers can use to attack any CFI scheme. We hope

that this work will motivate the development of principled, fundamental defenses to

code reuse attacks. We have also described extensions to the new RISC-V hardware

architecture which might one day provide a basis for these more fundamental defenses,

and designed and evaluated potential software control-flow policies which might run

on that hardware.

71

72

Bibliography

[1] clang: a C language family frontend for LLVM. http://clang.llvm.org/.

[2] List of google chrome cves. MITRE Corporation Database CVE Database List-
ings.

[3] List of mozilla firefox cves. MITRE Corporation Database CVE Database List-
ings.

[4] Vulnerability summary for cve-2013-2028. Available from MITRE, CVE-ID CVE-
2013-2028., 2013.

[5] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Proc. of ACM CCS, 2005.

[6] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. A theory of se-
cure control flow. In Proceedings of the 7th International Conference on Formal
Methods and Software Engineering, ICFEM’05, pages 111–124, Berlin, Heidel-
berg, 2005. Springer-Verlag.

[7] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel
Castro. Preventing Memory Error Exploits with WIT. In Security and Privacy,
2008.

[8] O. H. Alhazmi, Y. K. Malaiya, and I. Ray. Measuring, analyzing and predicting
security vulnerabilities in software systems. Comput. Secur., 26(3):219–228, May
2007.

[9] Krste Asanović and David A. Patterson. Instruction sets should be
free: The case for risc-v. Technical report, University of California
at Berkeley, http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-
146.pdf, aug 2014.

[10] Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, and Dan Boneh.
Hacking blind. In Proceedings of the 2014 IEEE Symposium on Security and
Privacy, SP ’14, pages 227–242, Washington, DC, USA, 2014. IEEE Computer
Society.

73

[11] Erwin Bosman and Herbert Bos. Framing signals-a return to portable shellcode.
In Security and Privacy (SP), 2014 IEEE Symposium on, pages 243–258. IEEE,
2014.

[12] Alex Bradbury, Gavin Ferris, and Robert Mullins. Tagged memory and minion
cores in the lowrisc soc. Memo, University of Cambridge, 2014.

[13] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good
instructions go bad: Generalizing return-oriented programming to risc. In Pro-
ceedings of the 15th ACM Conference on Computer and Communications Secu-
rity, CCS ’08, pages 27–38, New York, NY, USA, 2008. ACM.

[14] David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff,
Munraj Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G.
Neumann. Beyond the pdp-11: Architectural support for a memory-safe c ab-
stract machine. SIGARCH Comput. Archit. News, 43(1):117–130, March 2015.

[15] Joel Sandin Daniel Mayer. Time trial: Racing towards practical remote timing
attacks. Technical report, Matasano Security Research, aug 2014.

[16] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Ropdefender: A detec-
tion tool to defend against return-oriented programming attacks. In Proceedings
of the 6th ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’11, pages 40–51, New York, NY, USA, 2011. ACM.

[17] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hard-
bound: Architectural support for spatial safety of the c programming language.
SIGPLAN Not., 43(3):103–114, March 2008.

[18] Udit Dhawan, Catalin Hritcu, Raphael Rubin, Nikos Vasilakis, Silviu Chiricescu,
Jonathan M. Smith, Thomas F. Knight, Jr., Benjamin C. Pierce, and Andre De-
Hon. Architectural support for software-defined metadata processing. SIGARCH
Comput. Archit. News, 43(1):487–502, March 2015.

[19] Isaac Evans, Sam Fingeret, Julián González, Ulziibayar Otgonbaatar, Tiffany
Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. Missing the point(er): On the effectiveness of code pointer integrity.
In Proc. of IEEE S&P, 2015.

[20] Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On the weak-
nesses of fine-grained control flow integrity. In ACM SIGSAC Conference on
Computer and Communications Security. CCS, 2015.

[21] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending em-
bedded systems against control flow attacks. In Proceedings of the First ACM
Workshop on Secure Execution of Untrusted Code, SecuCode ’09, pages 19–26,
New York, NY, USA, 2009. ACM.

74

[22] Michael Franz. E unibus pluram: Massive-scale software diversity as a defense
mechanism. In Proceedings of the 2010 Workshop on New Security Paradigms,
NSPW ’10, pages 7–16, New York, NY, USA, 2010. ACM.

[23] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Gerogios Portokalidis.
Out of control: Overcoming control-flow integrity. In Proc. of IEEE S&P, 2014.

[24] John L. Henning. Spec cpu2006 benchmark descriptions. SIGARCH Comput.
Archit. News, 34(4):1–17, September 2006.

[25] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: An experimental study of dram disturbance errors. SIGARCH
Comput. Archit. News, 42(3):361–372, June 2014.

[26] Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea,
R. Sekar, and Dawn Song. Code-pointer integrity. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, pages 147–163, Berkeley, CA, USA, 2014. USENIX Association.

[27] Albert Kwon, Udit Dhawan, Jonathan M Smith, Thomas F Knight Jr, and Andre
DeHon. Low-fat pointers: compact encoding and efficient gate-level implementa-
tion of fat pointers for spatial safety and capability-based security. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 721–732. ACM, 2013.

[28] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. Sok: Auto-
mated software diversity. In Security and Privacy (SP), 2014 IEEE Symposium
on, pages 276–291. IEEE, 2014.

[29] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making context-sensitive
points-to analysis with heap cloning practical for the real world. In Proc. of
PLDI, 2007.

[30] Byoungyoung Lee, Chengyu Song, Taesoo Kim, and Wenke Lee. Type casting
verification: Stopping an emerging attack vector. In 24th USENIX Security Sym-
posium (USENIX Security 15), pages 81–96, Washington, D.C., August 2015.
USENIX Association.

[31] Ali José Mashtizadeh, Andrea Bittau, David Mazières, and Dan Boneh. Cryp-
tographically enforced control flow integrity. CoRR, abs/1408.1451, 2014.

[32] Swamy Shivaganga Nagaraju, Cristian Craioveanu, Elia Florio, and Matt Miller.
Software vulnerability exploitation trends. Technical report, Microsoft Corpora-
tion, 2013.

[33] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watchdoglite:
Hardware-accelerated compiler-based pointer checking. In Proceedings of Annual

75

IEEE/ACM International Symposium on Code Generation and Optimization,
CGO ’14, pages 175:175–175:184, New York, NY, USA, 2014. ACM.

[34] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
Softbound: Highly compatible and complete spatial memory safety for c. SIG-
PLAN Not., 44(6):245–258, June 2009.

[35] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin
Kirda. G-free: Defeating return-oriented programming through gadget-less bi-
naries. In Proceedings of the 26th Annual Computer Security Applications Con-
ference, ACSAC ’10, pages 49–58, New York, NY, USA, 2010. ACM.

[36] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code randomiza-
tion. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP
’12, pages 601–615, Washington, DC, USA, 2012. IEEE Computer Society.

[37] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Transparent
rop exploit mitigation using indirect branch tracing. In Proceedings of the 22Nd
USENIX Conference on Security, SEC’13, pages 447–462, Berkeley, CA, USA,
2013. USENIX Association.

[38] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang.
Syst., 16(5):1467–1471, September 1994.

[39] David A. Ramos and Dawson Engler. Under-constrained symbolic execution:
Correctness checking for real code. In 24th USENIX Security Symposium
(USENIX Security 15), pages 49–64, Washington, D.C., August 2015. USENIX
Association.

[40] Vijay Janapa Reddi, Alex Settle, Daniel A. Connors, and Robert S. Cohn. Pin: A
binary instrumentation tool for computer architecture research and education. In
Proceedings of the 2004 Workshop on Computer Architecture Education: Held in
Conjunction with the 31st International Symposium on Computer Architecture,
WCAE ’04, New York, NY, USA, 2004. ACM.

[41] Jeff Seibert, Hamed Okhravi, and Eric Söderström. Information leaks without
memory disclosures: Remote side channel attacks on diversified code. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, pages 54–65, New York, NY, USA, 2014. ACM.

[42] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. Addresssanitizer: A fast address sanity checker. In Proceedings of the
2012 USENIX Conference on Annual Technical Conference, USENIX ATC’12,
pages 28–28, Berkeley, CA, USA, 2012. USENIX Association.

76

[43] Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christo-
pher Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the ef-
fectiveness of fine-grained address space layout randomization. In Proceedings
of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pages 574–588,
Washington, DC, USA, 2013. IEEE Computer Society.

[44] SUSE, https://www.suse.com/documentation/sles-
12/book_sle_tuning/data/sec_tuning_power_cpu.html. Power Management
at CPU Level, suse linux enterprise server 12 edition, jul 2015.

[45] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Er-
lingsson, Luis Lozano, and Geoff Pike. Enforcing forward-edge control-flow in-
tegrity in gcc & llvm. In Proceedings of the 23rd Usenix Security Symposium,
San Diego, CA, 2014.

[46] Denys Vlasenko. Busybox: The swiss army knife of embedded linux.
http://www.busybox.net.

[47] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code. In
Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 157–168, New York, NY, USA, 2012. ACM.

[48] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Nor-
ton, and Michael Roe. The cheri capability model: Revisiting risc in an age of
risk. In Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ISCA ’14, pages 457–468, Piscataway, NJ, USA, 2014. IEEE Press.

[49] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. Practical control flow integrity and ran-
domization for binary executables. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, SP ’13, pages 559–573, Washington, DC, USA, 2013.
IEEE Computer Society.

77

